本書有DRM加密保護,需使用HyRead閱讀軟體開啟
  • 極簡貝氏統計學
  • 點閱:287
  • 作者: 佐佐木淳著 , 趙鴻龍譯
  • 出版社:楓葉社
  • 出版年:2022民[111]
  • ISBN:9789863704102
  • EISBN:9789863704188 EPUB
  • 格式:EPUB 版式

~最強的決策工具,也是最流行的統計學~
從「結果」倒推「原因」,少少的情報就足以預測未來!
 
  日本物理學家佐治晴夫曾說過:「所有的過去,都可以被改寫。」
  福爾摩斯的經典名言:「排除一切不可能之後,最後剩下的無論再如何離奇,也必然是真相。」

  這兩句名言所闡述的「反向推理」,背後所牽涉的概念,其實就是「貝氏統計」的核心。
 
  隨著「大數據」、「資料庫」成為科技趨勢,「統計學」成為近年來的顯學。
  其中,又以「貝氏統計學」為創新領域最廣泛提及的佼佼者。
 
  ◆◆什麼是貝氏統計學?◆◆
  我們生活周遭充滿各式各樣的「資訊」,例如節目收視率、考試分數、降雨機率、每戶家庭的存款餘額。
  利用這些資訊,掌握並分析現狀,藉此預測未來,這就是統計學的應用之道。
  然而,資訊卻也可能隨著情況變化而隨時改變,例如許多猜謎節目,就很可能隨著提示增加而提高答對的機率。
  不斷收集新的資料來掌握來更新機率,這樣的方法就稱作「貝氏定理」。
  而「貝氏統計」正是以「貝氏定理」為基礎的統計方法,亦即根據「結果」尋找「原因」。
 
  ・針對罹患率低的傳染病,全民篩檢真有意義嗎?
  ・電子信箱是如何過濾垃圾郵件?
  ・假設飛機遭遇空難,如何縮小海面的搜尋範圍?
 
  曾經令現代人棘手的數學難題,都能在貝氏統計的預測下,幫助我們跨出一大步!
 
  ◆◆貝氏統計好難學?皆因這兩大難關◆◆
  本書作者為日本海上自衛隊的數學科教官,專門教授飛行預官的課程。
  要駕駛飛機這架龐然巨物,飛行官的日常工作自然也免不了數學計算與估值,舉凡燃油消耗量、起飛數據、下降軌道等等。
 
  多年的教學,讓作者在協助學生克服數學心魔的同時,也成功歸納出有效學習的竅門──關鍵就在於使「抽象」的邏輯思考,改以視覺呈現,眼見更能「直觀」理解!
 
  初次學習貝氏統計的人,「符號」和「條件機率」往往成為難以逾越的高牆。
  本書將推論與計算的過程,均以圖表詳細解說,搭配每一節的教學重點,先從暖身題提示核心觀念,再融入日常時常耳聞的經典例題,導入貝氏定理解題。
 
  循序漸進的學習模式,通過插圖使數字視覺化呈現,助你一一突破自學的關卡!
 
本書特色
 
  ◎全書以圖解&步驟拆解,視覺化呈現運算的邏輯,助你突破貝氏統計的兩大難關──「符號」和「條件機率」。
  ◎蒙提霍爾問題、囚徒問題、垃圾郵件的過濾,援引6道經典例題,深化理解貝氏統計學,啟發你的應用靈感。
  ◎每小節的最後都有重點總結,學習後就能快速歸納要點。

作者簡介
 
佐佐木淳
 
  1980年出生於宮城縣仙台市。東京理科大學理學部第一部數學科畢業後,於東北大學研究所理學研究科專攻數學。取得數學檢定一級、算術・數學思考力檢定一級、G檢定(JDLA Deep Learning For GENERAL 2020# 2)。

 
  大學在學期間,曾於早稻田Academy累積教學經驗。他負責教導國二成績最差的一班,從簡單的問題開始讓學生「動手解題」、反覆讓學生演練「嘗試解題」、對學生「稱讚勉勵」,透過這種山本五十六式的教學方法,成功建立起學生的自信心。之後進入代代木研究班,成為最年輕的講師。現於防衛省海上自衛隊擔任數學教官,致力於充實飛行預官的基礎教育。因功績深受肯定,破例獲頒事務官等的三級賞詞(※授予職務上有特殊功績,以及技術方面有卓越發明或提案之人的獎項(表彰等相關訓令 第2章 第5條)。
 
  主要著作包括《啟動數學腦這樣學》(木馬文化出版)、《圖解超易懂微積分》(台灣東販出版)。目前也負責《讀賣中高生新聞》的「傾聽理數」專欄。
 
譯者簡介
 
趙鴻龍
 
  畢業於輔仁大學統計資訊系,對日本歷史文化情有獨鍾。譯有《經濟學速成讀本》、《揭露廣告與媒體的統計學破綻》、《懶人最需要的高效率「極簡整理術」》等書。
  • 書封
  • 前言
  • 目錄
  • 第1章 什麼是「貝氏統計」?
    • 基礎知識1 「統計」的定義
    • 基礎知識2 用「貝氏統計」處理變化的機率
    • 基礎知識3 統計用語
    • 基礎知識4 統計「最前線」就在超商!
    • 基礎知識5 掌握統計的「基礎」
    • 基礎知識6 資料的分類
    • 基礎知識7 質的資料(無法用數值衡量的資料)
    • 基礎知識8 量的資料(可以用數值衡量的資料)
    • 基礎知識9 「傳統統計學」與「貝氏統計」的區別
    • 基礎知識10 「敘述統計」與「推論統計」
    • 基礎知識11 代表值和分散度
    • 基礎知識12 從調查「最大值」與「最小值」開始
    • 基礎知識13 認識代表值之王「平均數」
    • 基礎知識14 平均數無法發揮,就改用「中位數」
    • 基礎知識15 計算平均數容易犯的「錯誤」
    • 基礎知識16 不易受離群值影響的中位數
    • 基礎知識17 資料的「多數決」──眾數
  • 第2章 入門速記!「集合」和「機率」的符號
    • → 暖身題!「集合」和「機率」的符號練習
  • 第3章 什麼是「條件機率」?
    • → 愈熟悉愈加分的「條件機率」!
    • → 暖身題!「條件機率」的練習
    • → 條件機率的著名題目① 三個櫃子
    • → 條件機率的著名題目② K先生總把帽子忘在別人家
    • → 條件機率很容易受到「直覺」欺騙
    • → 暖身題!推導「貝氏定理」的過程
    • → 試著用「貝氏定理」來解題
  • 第4章 「貝氏定理」的三道經典例題
    • → 蒙提霍爾問題 換一扇門比較好?還是換了也一樣?
    • → P檢查和C病毒的問題 計算機率,「前提條件」很重要
    • → 三囚徒問題 囚犯A的生存機率果真提高了嗎?
    • → 飛機墜毀的問題 失事原因為引擎故障的機率是多少?
  • 第5章 「不充分理由原則」和「貝氏更新」
    • → 什麼是「不充分理由原則」?
    • → 暖身題!從壺裡取出藍色球的機率 假設時序相反時
    • → 機率不斷更新的「貝氏更新」 緊緊跟隨每時每刻的變化
    • → 暖身題!「垃圾郵件」的篩選機制 從關鍵特徵反映機率
  • 後記
  • 參考文獻
  • 版權頁
紙本書 NT$ 380
單本電子書
NT$ 266

還沒安裝 HyRead 3 嗎?馬上免費安裝~
QR Code