PDF JPG
本書有DRM加密保護,需使用HyRead閱讀軟體開啟
  • 基礎太空電漿物理學(Elementary Space Plasma Physics)
  • 點閱:13
  • 作者: Ling-Hsiao Lyu(呂凌霄)著
  • 出版社:Ainosco Press
  • 出版年:2014
  • ISBN:9789866286674
  • 格式:PDF,JPG
  • 頁數:216

  隨著太空電漿物理現象的不同,其所涵蓋的特徵尺度範圍可小至電子的慣性尺度,也可大至磁流體力學(MHD)的尺度。雖然利用磁流體電漿模型,已經可用來描述許多的太空物理現象,但是就像大氣物理中的地轉風模式一樣,我們應該要謹慎考慮它們的適用範圍。本書的重點之一,就是要教導學生,科學家是如何得到那些特定電漿模型的控制方程式,並讓讀者了解,要獲得這套控制方程式,需要做哪些基本的假設。我們相信,除非學生能徹底了解各種電漿模式的控制方程式以及它們的線性色散關係是如何推導出來的,否則是很難真正了解不同電漿模型的適用條件,也自然很難對症下藥,選用正確的電漿模式,來解釋分析觀測到的物理現象。

  本書一開始先介紹電漿微觀動力模式、電子-正離子雙流體模式、與單流體電漿模式的基本方程式。接著介紹電子-正離子雙流體電漿與磁流體電漿中的線性波色散關係式。並於本書後段介紹電漿微觀動力模式中的線性波色散關係式。因為認識帶電粒子在相空間中的運動軌跡,將有助於了解電漿微觀動力模式中,波與粒子的交互作用,因此在介紹電漿微觀動力模式的線性波色散關係前,本書將先介紹如何分析帶電粒子在不同電磁場環境中,所可能出現的多重時間尺度的運動情形。

  本書是針對兩學期研究所課程所設計的教科書。內容只涵蓋電漿物理的基本課題,因此授課老師可在一學年的時間裡,輕鬆的教完本書全部的課程。本書中第二、三章所推導的各種基本方程式,可為太空觀測資料的分析工作以及不同尺度電漿模擬碼的設計工作,提供非常實用的理論基礎。包括了太空物理、天文物理、與實驗室電漿物理等領域的學生與研究人員將發現本書的內容實用,且對相關研究工作有所幫助。


  本書封面圖片為沿著日地連線方向所作的磁鞘觀測結果。這項觀測結果顯示,或式(3.62),是一個比著名的CGL雙絕熱狀態方程式,還更具普遍性的絕熱方程式。(感謝趙寄昆教授提供這份珍貴的太空觀測資料分析結果。)

  The characteristic scale lengths of various space plasma phenomena range from the electron inertial length to the magnetohydrodynamic (MHD) scale length.

  The MHD plasma model in the space physics is like the geostrophic-wind approximation in the atmospheric physics.  Both of them have the limitation in their applications.  One of the important goals of this book is to show the students how scientists obtain the governing equations of a given plasma model and what assumptions have been made to obtain the set of governing equations shown in the literatures.  We believe that, unless the students know how to derive the governing equations and how to obtain the wave mode from a simplified linear dispersion relation, it will be difficult for the students to fully understand the limitations of a given plasma model and to apply the right model for the observed phenomena.

  The basic equations of the kinetic plasma, the ion-electron two-fluid plasma, and the one-fluid plasma are derived at the beginning of this book. 

  They are followed by the examinations of linear-wave dispersion relations in the ion-electron two-fluid plasma and in the one-fluid MHD plasma. The linear-wave dispersion relations in the kinetic plasma are presented at the end of this book.  Because understanding the particle trajectories in the phase space are essential to the study of the wave-particle interactions in the kinetic plasma, the multiple-time-scale particle motions are examined before studying the linear-wave dispersion relations in the kinetic plasma.

  This book is written for a two-semester graduate course. It contains only the fundamental subjects in the plasma physics.  Thus, an instructor can easily cover the entire book in two semesters.  The basic equations derive in Chapters 2 and 3 are particularly useful in analyzing the space plasma data and in designing simulation codes for different plasma models.  This book is of interest to students and researches in space physics, astrophysics, and laboratory plasma physics.

  Front cover shows magnetosheath observations along the Sun-Earth line. These results indicate that   or Eq. (3.62) is a more general adiabatic condition than the CGL double adiabatic equation of states.  (Courtesy of Professor J. K. Chao)


作者簡介

呂凌霄 Ling-Hsiao Lyu


  國立中央大學太空科學研究所&大氣科學系副教授

  美國阿拉斯加大學費班克分校太空物理博士
  研究專長:太空物理、電漿物理、數值模擬
  Associate professor, Institute of Space Science & Department of Atmospheric Science National Central University.
  Ph.D., University of Alaska Fairbanks, USA, 1991.
  Physics, Plasma Physics, Numerical Simulation


  • Preface(第i頁)
  • Table of Contents(第vii頁)
  • Chapter 1 Introduction(第1頁)
    • 1.1. Definition of Plasma(第2頁)
    • 1.2. The SI Units and The Gaussian Units(第2頁)
    • 1.3. Temperature in Units of ºK and eV(第8頁)
    • 1.4. Boltzmann Relation(第10頁)
    • 1.5. Debye Shielding and Debye Length(第11頁)
    • 1.6. Plasma Parameter(第13頁)
    • 1.7. Plasma Frequency(第14頁)
    • 1.8. Gyro Frequency and Gyro Radius (or Larmor Radius)(第15頁)
    • 1.9. Collisions(第16頁)
  • Chapter 2 Deriving the Vlasov Equation From the Klimontovich Equation(第19頁)
    • 2.1. Klimontovich Equation(第19頁)
    • 2.2. Vlasov Equation(第22頁)
  • Chapter 3 Deriving the Fluid Equations From the Vlasov Equation(第25頁)
    • 3.1. The Vlasov-Maxwell System(第25頁)
    • 3.2. The Fluid Variables(第27頁)
    • 3.3. The Fluid Equations(第31頁)
  • Chapter 4 Deriving the Vlasov Equation From the Liouville Equation(第47頁)
    • 4.1. Liouville Equation(第47頁)
    • 4.2. BBGKY Hierarchy(第48頁)
  • Chapter 5 Linear Waves in the Electron-Ion Two-Fluid Plasma(第51頁)
    • 5.1. How to Linearize the Nonlinear Plasma Equations(第52頁)
    • 5.2. Linear Plane Waves in Uniform Two-Fluid Plasma(第54頁)
    • 5.3. Dispersion Relations of High-Frequency Waves in a Uniform Two-Fluid Plasma(第58頁)
    • 5.4. Dispersion Relations of Cross-Ion-Electron-Time-Scale Linear Wave Modes in Uniform Two-Fluid Plasma(第77頁)
  • Chapter 6 Linear Waves in the MHD Plasma(第85頁)
    • 6.1. Linearized Wave Equations in a Uniform Isotropic MHD Plasma(第85頁)
    • 6.2. Linear Wave Modes in the MHD Plasma(第88頁)
  • Chapter 7 Particle Motions With Multiple Time Scales(第97頁)
    • 7.1. Periodic Motions and Drift Motions of a Charged Particle(第97頁)
    • 7.2. Fluid Drift(第103頁)
    • 7.3. Drift Motion in Time-Dependent Fields(第106頁)
  • Chapter 8 Equilibrium Solutions of the Vlasov Equation(第113頁)
    • 8.1. Characteristic Curves of a Partial Differential Equation(第113頁)
    • 8.2. Equilibrium Solutions of Time-Independent Vlasov-Maxwell Equations(第114頁)
  • Chapter 9 Electrostatic Linear Waves in the Vlasov Plasma(第117頁)
    • 9.1. Landau Contour(第117頁)
    • 9.2. Linear Dispersion Relations of Electrostatic Waves(第126頁)
    • 9.3. Landau Damping(第128頁)
    • 9.4. Nyquist Method(第129頁)
  • Chapter 10 Two-Stream Instability(第137頁)
  • Chapter 11 Linear Waves in the Vlasov Plasma(第145頁)
    • 11.1. Linear Waves in Field-Free Plasma (E0=0,B0=0)(第146頁)
    • 11.2. Linear Waves in Magnetized Plasma With Uniform Background B0(第151頁)
  • Appendix A Static Electric Field and Magnetic Field(第165頁)
    • A.1. General Solutions(第165頁)
    • A.2. Solutions of Special Cases(第166頁)
  • Appendix B Ohm’s Law in One-Fluid Plasma(第169頁)
  • Appendix C Frozen-in Flux(第173頁)
    • C.1. Proof of Frozen-in Flux (Method 1)(第173頁)
    • C.2. Proof of Frozen-in Flux (Method 2)(第174頁)
    • C.3. Conservation of Circulation vs. Frozen-in Flux in MHD Plasma(第175頁)
    • C.4 Equipotential Surface in MHD Plasma(第177頁)
  • Appendix D Curvature Drift(第179頁)
  • Appendix E Gradient B Drift(第181頁)
  • Appendix F Deriving the Relativistic Vlasov Equation From the Relativistic Klimontovich Equation(第183頁)
    • F.1. Relativistic Klimontovich Equation(第183頁)
    • F.2. Relativistic Vlasov Equation(第185頁)
  • Appendix G Functions of Complex Variable(第187頁)
    • G.1. Analytic Function&Residue Theorem(第187頁)
    • G.2. Branch Point and Riemann Surface(第188頁)
  • Appendix H Special Functions for Studying Linear Waves in Kinetic Plasmas(第191頁)
    • H.1. Bessel Function(第191頁)
    • H.2. Error Function(第193頁)
    • H.3. Plasma Dispersion Function(第194頁)
  • Index(第197頁)
紙本書 NT$ 450
單本電子書
NT$ 315

還沒安裝 HyRead 3 嗎?馬上免費安裝~
QR Code